keindahan yang jelas nyata

keindahan yang jelas nyata
keindahan yang jelas nyata

Senin, 12 September 2011

SINTESIS PROTEIN


SINTESIS PROTEIN

Semua aktivitas sel dikendalikan oleh aktivitas nukleus. Cara pengendalian ini berkaitan dengan aktivitas nukleus memproduksi protein, dimana protein ini merupakan penyusun utama dari semua organel sel maupun penggandaan kromosom. Contoh protein yang dapat dihasilkan seperti protein struktural yang digunakan sebagai penyusun membran sel dan protein fungsional (misalnya enzim) yang digunakan sebagai biokatalisator untuk berbagai proses sintesis dalam sel.
Protein adalah polipeptida (gabungan dari beberapa asam amino). Maka untuk membentuk suatu protein diperlukan bahan dasar berupa asam amino. Polipeptida dikatakan protein jika paling tidak memiliki berat molekul kira-kira 10.000. Di dalam ribosom, asam amino-asam amino dirangkai menjadi polipeptida dengan bantuan enzim tertentu. Polipeptida dapat terdiri atas 51 asam amino (seperti pada insulin) sampai lebih dari 1000 asam amino (seperti pada fibroin, protein sutera). Macam molekul polipeptida tergantung pada asam amino penyusunnya dan panjang pendeknya rantai polipeptida. Seperti yang telah kita pelajari sebelumnya bahwa ada 20 macam asam amino penting yang dapat dirangkai membentuk jutaan macam kemungkinan polipeptida.
·         Lalu bagaimana sesungguhnya mekanisme pembentukan protein itu?
·         Apakah DNA terlibat dalam pembentukan protein?
Sintesis protein melibatkan DNA sebagai pembuat rantai polipeptida. Meskipun begitu, DNA tidak dapat secara langsung menyusun rantai polipeptida karena harus melalui RNA. Seperti yang telah kita ketahui bahwa DNA merupakan bahan informasi genetik yang dapat diwariskan dari generasi ke generasi. Informasi yang dikode di dalam gen diterjemahkan menjadi urutan asam amino selama sintesis protein. Informasi ditransfer secara akurat dari DNA melalui RNA untuk menghasilkan polipeptida dari urutan asam amino yang spesifik.
Suatu konsep dasar hereditas yang mampu menentukan ciri spesifik suatu jenis makhluk menunjukkan adanya aliran informasi bahan genetik dari DNA ke asam amino (protein). Konsep tersebut dikenal dengan dogma genetik. Tahap pertama dogma genetik dikenal sebagai proses transkripsi DNA menjadi mRNA. Tahap kedua dogma genetik adalah proses translasi atau penerjemahan kode genetik pada RNA menjadi urutan asam amino. Dogma genetik dapat digambarkan secara skematis sebagai berikut.


Translasi adalah proses penerjemahan kode genetik oleh tRNA ke dalam urutan asam amino. Translasi menjadi tiga tahap (sama seperti pada transkripsi) yaitu inisiasi, elongasi, dan terminasi. Semua tahapan ini memerlukan faktor-faktor protein yang membantu mRNA, tRNA, dan ribosom selama proses translasi. Inisiasi dan elongasi rantai polipeptida juga membutuhkan sejumlah energi. Energi ini disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip dengan ATP.
1.  Inisiasi
Tahap inisiasi terjadi karena adanya tiga komponen yaitu mRNA, sebuah tRNA yang memuat asam amino pertama dari polipeptida, dan dua sub unit ribosom.
mRNA yang keluar dari nukleus menuju sitoplasma didatangi oleh ribosom, kemudian mRNA masuk ke dalam “celah” ribosom. Ketika mRNA masuk ke ribosom, ribosom “membaca” kodon yang masuk. Pembacaan dilakukan untuk setiap 3 urutan basa hingga selesai seluruhnya. Sebagai catatan ribosom yang datang untuk mebaca kodon biasanya tidak hanya satu, melainkan beberapa ribosom yang dikenal sebagai polisom membentuk rangkaian mirip tusuk satu, di mana tusuknya adalah “mRNA” dan daging adalah “ribosomnya”. Dengan demikian, proses pembacaan kodon dapat berlangsung secara berurutan. Ketika kodon I terbaca ribosom (misal kodonnya AUG), tRNA yang membawa antikodon UAC dan asam amino metionin datang. tRNA masuk ke celah ribosom.
Ribosom di sini berfungsi untuk memudahkan perlekatan yang spesifik antara antikodon tRNA dengan kodon mRNA selama sintesis protein. Sub unit ribosom dibangun oleh protein-protein dan molekul-molekul RNA ribosomal.

2.  Elongasi
Pada tahap elongasi dari translasi, asam amino-asam amino ditambahkan satu per satu pada asam amino pertama (metionin). Ribosom terus bergeser agar mRNA lebih masuk, guna membaca kodon II. Misalnya kodon II UCA, yang segera diterjemahkan oleh tRNA berarti kodon AGU sambil membawa asam amino serine. Di dalam ribosom, metionin yang pertama kali masuk dirangkaikan dengan serine membentuk dipeptida.
Ribosom terus bergeser, membaca kodon III. Misalkan kodon III GAG, segera diterjemahkan oleh antikodon CUC sambil membawa asam amino glisin. tRNA tersebut masuk ke ribosom. Asam amino glisin dirangkaikan dengan dipeptida yang telah terbentuk sehingga membentuk tripeptida. Demikian seterusnya proses pembacaan kode genetika itu berlangsung di dalam ribobom, yang diterjemahkan ke dalam bentuk asam amino guna dirangkai menjadi polipeptida.
Kodon mRNA pada ribosom membentuk ikatan hidrogen dengan antikodon molekul tRNA yang baru masuk yang membawa asam amino yang tepat. Molekul mRNA yang telah melepaskan asam amino akan kembali ke sitoplasma untuk mengulangi kembali pengangkutan asam amino. Molekul rRNA dari sub unit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkan polipeptida yang memanjang ke asam amino yang baru tiba.

3.  Terminasi
Tahap akhir translasi adalah terminasi. Elongasi berlanjut hingga kodon stop mencapai ribosom. Triplet basa kodon stop adalah UAA, UAG, dan UGA. Kodon stop tidak mengkode suatu asam amino melainkan bertindak sinyal untuk menghentikan translasi. Polipeptida yang dibentuk kemudian “diproses” menjadiprotein.



Tidak ada komentar:

Posting Komentar